

Public Products List

PCN Title : New material set in ST Boukoura on SO8 package (Voltage Reference) - General Purpose Analog products

PCN Reference : AMG/16/9849

PCN Created on : 16-Jun-2016

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

TL431IDT	TL431CDT	TL431ACDT
TL1431IDT	TL431AIDT	TL1431CDT
TL1431ACDT		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Report ID 2016-W18 -SOAG

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMG/16/9849

Analog & MEMS Group

New material set in ST Bouskoura for SO8 package Voltage reference – General Purpose Analog Division

WHAT:

Progressing on the activities related to quality continuous improvement, ST is glad to announce a new material set for SO8 packages produced in ST Bouskoura. Please find more information related to material change in the table here below

	Current process	Modified process	Comment
Material			
Diffusion location	ST Ang Mo Kio (Singapore)	ST Ang Mo Kio (Singapore)	No change
Assembly location	ST Bouskoura	ST Bouskoura	No change
Molding compound	Sumitomo G700K	Sumitomo G700KC	Similar grade version more adapted to high density frame
Die attach	Ablestick 8601-S25	Ablestick 8601-S25	No change
Leadframe	Copper preplated NiPdAgAu standard density	Copper preplated ag spot High density	Move to Sn plating to solve some sporadic discoloration issues
Wire	Copper 1 mil	Copper 1 mil	No change
Plating	NiPdAgAu	Sn	Sn plating already running for standard product for more than 3 year on SO package and will allow to solve sporadic discoloration is- sues sawn on NiPdAgAu plating

Samples of vehicle test are available now and other samples will be launched upon customer's request. Please submit requests for samples within 30 days of this notification.

WHY:

This material change will contribute to ST's continuous quality product improvement and ensure a consistent assembly process through all the SO production lines.

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new material set will be implemented in Q3/2016 in Bouskoura.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The second level interconnect, printed on label will move from e4 to e3.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

Shipments may start earlier with the customer's written agreement.

Reliability Report

New Halogen free material set for SO8 in ST Bouskoura for standard products

Product DescriptionDual comparator, bipolar, Quad comparator bipolar, Volt- age ReferenceWarer rabP/NLM2903YDT, LM2901YDT, TL431CDTAssembly plantST Bousko (Morocco)Product GroupAMGProduct divisionGeneral Purpose Analog & RF SO8/14ST Grenoh	Genera	I Information	Loc	ations
age ReferenceLM2903YDT, LM2901YDT,P/NLM2903YDT, LM2901YDT,TL431CDTProduct GroupAMGProduct divisionGeneral Purpose Analog &RFPackageSO8/14	Product Line		Wafer fab	ST Singapore
P/N TL431CDT Assembly plant (Morocco) Product Group AMG Product division General Purpose Analog &RF Package SO8/14 ST Grenoh	Product Description	age Reference		ST Bouskoura
Product division General Purpose Analog &RF Package SO8/14		TL431CDT	Assembly plant	(Morocco)
	Product division	General Purpose Analog &RF		ST Grenoble, ST
Silicon Process technology Bipolar Bouskourd	8	Bipolar	Reliability Lab	Bouskoura

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPI	LICABLE AND REFERENCE DOCUMENTS	10
2		SSARY	
3	RELI	ABILITY EVALUATION OVERVIEW	10
	3.1	OBJECTIVES	10
	3.2	CONCLUSION	
4	DEVI	CE CHARACTERISTICS	11
	4.1	DEVICE DESCRIPTION	11
	4.2	CONSTRUCTION NOTE	14
5	TES	IS RESULTS SUMMARY	
	5.1	Test vehicle	15
		TEST PLAN AND RESULTS SUMMARY	
6	ANN	EXES	
	6.1	DEVICE DETAILS	25
	6.2	TESTS DESCRIPTION	27

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for automotive grade integrated circuits
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

To qualify a new material set for SO8 package in ST Bouskoura (Sumitomo G700KC which is an evolution of Sumitomo G700K already in use in Bouskoura and move from NiPdAgAu preplating to Sn postplating) for AMG (Analog & Mems group).

3.2 Conclusion

Qualification Plan requirements have been fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

LM2903YDT

LM2903

Low-power dual voltage comparator

Datasheet - production data

- TTL, DTL, ECL, MOS, CMOS compatible outputs
- Automotive qualification

Related products

- See LM2903W for similar device with higher ESD performances
- See LM2903H for similar device with operating temperature up to 150 °C

Description

This device consists of two independent lowpower voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

In addition, the device has a unique characteristic in that the input common-mode voltage range includes the negative rail even though operated from a single power supply voltage.

N DIP8 (plastic package) P TSSOP8 (thin shrink small outline package) DFN8 2x2 mm (plastic micropackage)

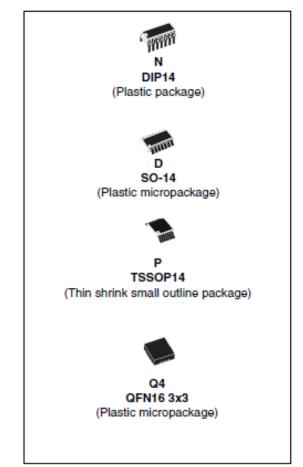
Features

- Wide single supply voltage range or dual supplies +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage

LM2901YDT,

LM2901

Low-power quad voltage comparator


Features

- Wide single supply voltage range or dual supplies for all devices: +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (1.1 mA) independent of supply voltage (1.4 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs

Description

This device consists of four independent precision voltage comparators, which are designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

These comparators also have a unique characteristic in that the input common-mode voltage range includes the negative rail even though operated from a single power supply voltage.

TL431 TL432

Programmable voltage reference

Datasheet - production data z **TO-92** SOT23-3 (Plastic package) SOT23-5 SOT323-6 D SO-8 (Batwing plastic micropackage)

Features

- Adjustable output voltage: 2.5 to 36 V
- Sink current capability: 1 to 100 mA
- Typical output impedance: 0.22 Ω
- 1% and 2% voltage precision
- Automotive temp. range 40 °C to +125 °C

Applications

- Power supply
- Industrial
- Automotive

Description

The TL431 and TL432 are programmable shunt voltage references with guaranteed temperature stability over the entire operating temperature range. The device temperature range is extended for the automotive version from -40 °C up to +125 °C. The output voltage can be set to any value between 2.5 and 36 V with two external resistors. The TL431 and TL432 operate with a wide current range from 1 to 100 mA with a typical dynamic impedance of 0.22 Ω .

13

4.2 Construction note

	P/N LM2903YDT	P/N LM2901YDT	P/N TL431CDT
Wafer/Die fab. information			
Wafer fab manufacturing location	ST Singapore	ST Singapore	ST Singapore
Technology	Bipolar	Bipolar	HBIP40V
Die finishing back side	RAW SILICON	RAW SILICON	HBIP40V
Die size (microns)	950 x 870 μm	1370x1270	900x620µm
Bond pad metallization layers	AlSiCu	AlSiCu	AlSiCu
Passivation type	Nitride	Nitride	PVAPOX/NITRIDE
Wafer Testing (EWS) information			
Electrical testing manufacturing location	ST Singapore	ST Singapore	ST Singapore
Tester	ASL1K	ASL1K	ASL1K
Assembly information			
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura
Package description	SO8	SO14	SO8
Molding compound	EME G700KC	EME G700KC	EME G700KC
Frame material	Cu	Cu	Cu
Die attach process	Epoxy Glue	Epoxy Glue	Epoxy Glue
Die attach material	8601S-25	8601S-25	8601S-25
Wire bonding process	Thermosonic ball bonding	Thermosonic ball bonding	Thermosonic ball bonding
Wires bonding materials/diameters	Cu 1 mil	Cu 1 mil	Cu 1 mil
Lead finishing process	electroplating	electroplating	electroplating
Lead finishing/bump solder material	Matte tin	Matte tin	Matte tin
Final testing information			
Testing location	ST Bouskoura	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K	ASL1K

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lo t #	Process/ Package	Product Line	Comments
			CZ53005LRP
			CZ53005LRN
1	Bipolar/SO8	0393	CZ53005LRQ
1	Bipolai/SO8	0393	CZ53005LRR
			CZ53005LRM
			CZ53005LRL
			CZ52405FR6
2	Bipolar/SO14	0339	CZ52405FR7
			CZ52405FR8
12	HBIP40V	0431	CZ54406NRQ

5.2 Test plan and results summary

1			r				Failure/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0393	Lot 2 0339	Lot12 0431	Note
HTB/		JESD22			168 H	0/78	0/78	0/77	* Tj=125°C
HTOL	Ν	A-108	$Ta = 150^{\circ}C, BIAS$		500 H	0/78	0/78	0/77	
mor					1000 H	0/78	0/78	0/77	
ELFR	Ν	JESD22 A-008	$Ta = 125^{\circ}C, BIAS$			0/450	0/450		
					168 H	6X0/77	3x0/77	0/45	(1)
HTSL	Ν	JESD22	$Ta = 150^{\circ}C$		500 H	6X0/77	3x0/77	0/45	
IIISE		A-103	1a = 150 C		1000 H	6X0/77	3x0/77	0/45	
					2000H		3x0/77		
РС		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	PASS	PASS	PASS	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H 168H	6x0/77	3x0/77	0/77 0/77	(1)
					100 cy	6x0/77	3x0/77	0/77	(1)
TC	Y	JESD22	Ta = -65° C to 150° C		200 cy	6x0/77	3x0/77	0/77	
ic	1	A-104	1a = -05 C to 150 C		500 cy	6x0/77	3x0/77	0/77	
					1000cy	6x0/77	3x0/77		
		JESD22			168 H		0/78	0/77	
THB	Y	A-101	$Ta = 85^{\circ}C, RH = 85\%, BIAS$		500 H		0/78	0/77	
					1000 H		0/78	0/77	
		AEC Q101-							
ESD	Ν	001, 002 and 005	CDM			0/3	0/3	0/3	
SD	N		After ageing 8h and 16h			Pass	Pass		

(1) Additional split lot to cover the whole assembly variability

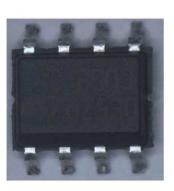
Solderability:

After SnPb

Lot reference: CZ53005LRN,CZ53005LRQ, CZ53005LRR, CZ53005LRL

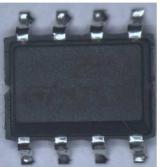
T0 solderability with SnPb bath and SnagCu bath 0 reject on 15 units:

No solderability issue on all units after



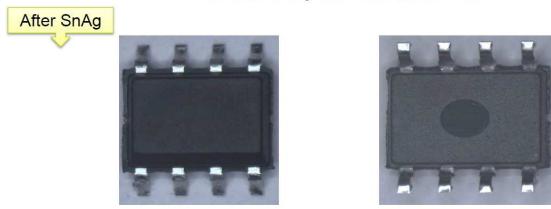
No solderability issue on all units after

After 8h 85°C/85%RH solderability with SnPb bath and SnAgCu bath 0 reject on 15 units:



No solderability issue on all units after

No solderability issue on all units after


After 16h 150°C, solderability with SnPb bath and SnAgCu bath 0 reject on 15 units:

No solderability issue on all units after

No solderability issue on all units after

The whisker test procedures identified in this report are used for determining the presence of tin whiskers and are performed by STMicroelectronics Inc., pursuant to current industry accepted JEDEC standards. The whisker test procedures used herein are unproven and may produce inconclusive results. STMicroelectronics Inc. makes no representation, warranty or guarantee of any kind with respect to the field performance, quality or freedom from whisker-related failures, of any package tested by STMicroelectronics using these procedures.

General Information

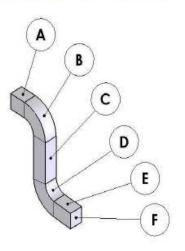
Package	SO8L PMOS
Factory	STMicroelectronics Morocco
Factory Location	Bouskoura
Lead Frame Alloy	Copper : O194
Lead Finish	Matte Tin
Tin Thickness	7 – 20 um on leads
Plating Vendor	Atotech GmbH
Plating Machine	MECO
Plating Chemistry	Stannopure HSM
Mitigation	Post Plating Bake within 24hrs @150 for 1 hr.

Chemical Plating process information

Description	Process	Volume tank (liter)	Make up Concentration (g/l or ml/l)	Density	Quantity used for the bath
Electro cleaner	Puronon RTR	80	100g/I		8kg
Activation Ni/Fe		1			
	Descabase Cu		50g/l		4kg
Activation Cu	H2SO4	80	30ml/l	1.61	3.36litre
Predip	MSA Special Acid HS	80	100ml/l	1.34	8litres
	MSA Tin Solution HS 20		70g/l	1.53	81 litres
	MSA Special Acid HS	9	190 g/l	1.34	71 litres
	Stannopure HSM Additive HT	320	50ml/l	1	16litres
	Stannopure HSM Grain Refiner GF		15ml/l	1	4.8litres
Tin plate	Antioxydant SN		5ml/l	1	1.6 litres
Neutral	Protectostan LF	80	100ml/I	1	8 litres
	Becastrip EL Part A	1000000	550ml/l	1.24	132 litres
Stripper	Becastrip EL Part B	240	20ml/I	1.53	4.8 litres

Equipment identification	Supplier		Ту	pe -		Model
MECO 1	MECO		Continuous au	omatic platin	e	EPL 1200S
-						1
		Electro	Activation	Pieting	Neutraliser]
	Temperature		Activation RT	Plating 45°C	Neutraliser RT	
	Temperature Voltage /Ampérage	deaner		alter forte		

PreCondition	Conditions
No Pre condition	Ambient Only
Reflow (Single Pass)	215 deg C in air
Reflow (Single Pass)	245 – 260 deg C in air


 10-June-2016
 Report ID 2016-W18 AG-SO

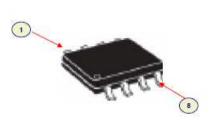

Test	Short description	Conditions
Thermal Cycling	тс	- 40℃ to + 85℃
High Humidity Storage	нт	55℃-85%RH
Controlled Ambient Storarge	RT	30℃-60%RH

Fig 1: Inspection Zones

Inspection: Top + 2 Sides

Lead identification

5

Temp. Cycles Whiskers inspection results

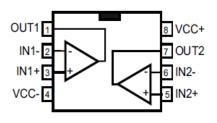
			n. of cycles			
Preconditioning	Device	Sample size	@ 0	@ 500	@1000	@1500
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers
None	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers
215℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers
247℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers

Soak 30c/60%RH Whisker Inspection Results

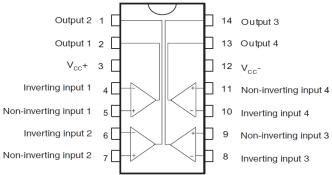
			Time in hrs				
Preconditioning	Device	Sample size	@ 0	@ 1000	@2000	@3000	@4000
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
None	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
215℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
247%	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker

Soak 55c/85%RH Whisker Inspection Results

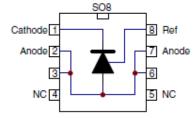
			Optical in	spection @	0 50 X			
			Time in hrs					
Preconditionin g	Device	Sample size	@0	@ 1000	@2000	@3000	@4000	Discounted lead
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	÷.
None	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
215℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
247℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	- 22

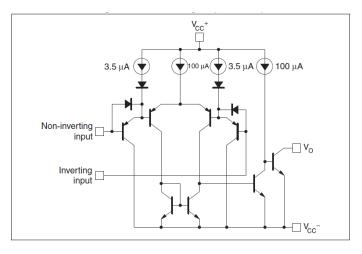


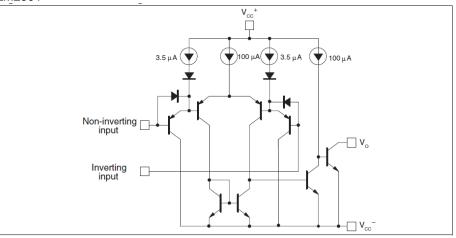
6 ANNEXES


6.1 Device details

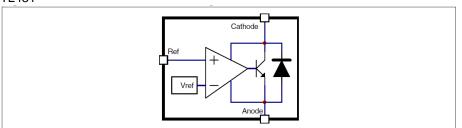
6.1.1 Pin connection


LM2903


0431



6.1.2 Block diagram


LM2903

6.2 Tests Description

Test name	Description	Purpose	
Die Oriented			
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.	
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.	
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds sol- der joint ageing, data retention faults, metal stress-voiding.	
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in ear- ly life.	
Package Oriented			
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.	
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.	
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials inter- acting in the die-package system. Typical fail- ure modes are linked to metal displacement, dielectric cracking, molding compound delam- ination, wire-bonds failure, die-attach layer degradation.	

Report ID 2016-W18 AG-SO

Test name	Description	Purpose
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.
THB Temperature Humi- dity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other	-	
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Re- moving the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.